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SUMMARY 

A general Fokker-Planck equation is deduced, which describes the 
distribution of geomagnetically trapped electrons as  a function of longitude, 
time, energy and mirror point field intensity. A special variable for the 
longitudinal position of a particle is  introduced. 

The physical interpretation of this equation is analyzed for several 
special cases. In particular, it is found that the usual procedure of aver- 
aging over longitude in order to obtain a longitude-independent equation, 
is not valid for the description of electrons mirroring at low altitudes. In 
that case, the longitude dependence cannot be averaged out, and a four- 
dimensional equation must be used. 

The coefficients representing longitudinal drift, ionization loss and 
multiple, screened Coulomb scattering in the general Fokker-Planck equa- 
tion a re  deduced. An approximation is given for a simple model of the 
field and the atmosphere in the South American Anomaly. Qualitative 
conclusions are drawn for the mirror point ''flow" along lines of force, 
for a stationary electron distribution drifting through the Anomaly. It is 
concluded that the region East of the Anomaly, initially depleted by pre- 
cipitation, is replenished by electrons whose mirror points were  situated 
in a narrow "window" in By before passing through the Anomaly. A very 
limited extension of the atmosphere in the region of the Anomaly is re- 
sponsible for this mechanism of replenishment. A diurnal effect for the 
electron fluxes in the replenished region is predicted, controlled by the 
diurnal variation of the atmosphere in the Anomaly. 
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. 
CALCULATIONS OF LONGITUDE DEPENDENCE OF 

GEOMAGNETICALLY TRAPPED ELECTRON FLUXES 

PART I 

THE GENERAL FOKKER-PLANCK EQUATION 

FOR ELECTRON DIFFUSION 

INTRODUCTION 

Time has come to look with more detail into the latitude dependence of geo- 
magnetically trapped particle fluxes from the theoretical point of view. Until 
recently, experimental information on this subject was very scarce. Only after 
the discovery of the so-called South American Anomaly by Vernov, et  a1.l and 
the more detailed surveys with Discoverer satellites by Mann, Bloom and West2, 
attention got more and more focussed on the experimental analysis of particle 
precipitation in the Anomaly, and the mechanism of subsequent replenishment 
of the depleted shell regions. In particular, Imhof and Smith3, Paulikas and 
Freden4 and Mihalov et  a l .5  have made a careful study of artifically injected 
electron fluxes, measured by various satellites. On the other hand, Freden and 
Paulikas and White ' have analyzed proton fluxes at low altitudes in the Anomaly. 
Evidence for Bremsstrahlung X-rays from electrons precipitating into the 
Anomaly was recently found by Ghielmetti, et. a1.8. It is, therefore, desirable 
to set up a theoretical description of the longitudinal behavior of trapped particles, 
and to test by comparison with experimental data, the various assumptions made 
about interaction processes governing particle diffusion. 

Theoretical description of electron trapping, diffusion and precipitation was 
so far done only for configurations averaged over all longitudes 9, lo, l1 y l 2 ,  13. 
In these papers, a time dependent Fokker-Planck equation was set up for the 
electron distribution function and used to follow the evolution in time of a given, 
initial electron flux. 

In order to study the longitude dependence of the electron distribution on a 
given magnetic shell, it is necessary to derive a more general diffusion equation 
which contains an additional variable related to longitude. In this equation the 
coefficients, which depend upon the atmosphere, will be a function of longitude 
and local time of day in the Anomaly; %e important by-product of the equation 
derivation will be the identification of an appropriate variable by which to describe 
the longitudinal dependence. We will call this variable X. It will be used, together 
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with the particle energy E ,  the scalar magnetic field B at the mir ror  point, and 
the well-known McIlwain shell parameter L, l4 to describe the space in which 
particle densities change with time, t. 

The main purpose of Par t  I is to set  up such a general equation, to discuss 
its physical meaning, to compare it with the previously used longitude-averaged 
equation, and to draw some general, qualitative conclusions about longitude de- 
pendence of trapped electrons. Part 11* will deal with atmosphere-field configura- 
tions to be used in this longitude dependent description. In Part III*, results of 
a numerical integration of the general equation will be presented. 

Before setting up our equation, let us picture the problem in general terms. 
Consider the familiar €3-L space, in which trapped radiation fluxes a re  usually 
described (Fig. 1). It can be shown that electrons whose mirror  points a re  below 
100 km cannot remain trapped for  more than a few bounces. Thus, it is qualita- 
tively useful to consider the 100 km level as the location of a sink. We shall 
return to this point in more detail later. At a given longitude the 100 km level 
can be displayed as a locus Bc (L, X) in B-L space. Essentially no electrons 
will be found with mirror  points above this curve, that is, for mirror  point fields 
larger than Bc (L, X) . We have plotted two extreme loci of the 100 km level, 
corresponding to a longitude (that is, a value of X)  right in the "center" of the 
South American Anomaly, and a longitude over the Pacific Ocean, respectively. 
From Fig. 1, one can see that for particles of a given energy, the 100 km curve, 
Bc (L, X) , "oscillates" with longitudinal drift frequency between these two extreme 
positions. As Bc (L, X) lowers from its maximum, or  '' Pacifict' , position, the 
region in B-L space between the two extreme positions, called the "shadow 
region", is wiped clean of particles. As  Bc (L, X) r i ses  from its minimum, o r  
"Anomaly", position, the opportunity exists for atmospheric scattering, or any 
other nonadiabatic process , to repopulate this shadow region. This wiping clean 
and repopulation has been likened to the action of a windshield wiper. 

. 

Satellite observations do, in fact, find particles in the shadow region (Imhof 
and Smith3). This observation means that particles have enough non-adiabatic 
interaction during one drift around the earth to diffuse into the wiped-out o r  
"shadow" region. Our main goal is to study this process of fast replenishment 
of the shadow region in the case of electrons interacting with the atmosphere by 
Coulomb scattering and energy loss. 

*Will be published at a later date 
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Figure 1-The "windshield wiper' effect in B-L space. 

REPRESENTATION OF THE ELECTRON DISTRIBUTION 
AS A FUNCTION OF LONGITUDE 

We shall describe the trapped electrons by the distribution function used by 
Welch, Kaufmann and Hess'O. For a given L-shell we denote by 

b;N = U(l3, E, 'p, t )  64 6B 6E (1) 

the number of electrons contained at the time t in a tube of field lines of mag- 
netic flux 84 situated at a longitude 'p (for the time being, we shall use the geo- 
graphic longitude of the magnetic equatorial point), with mirror points between 
B and B t 8B, and with kinetic energies between E and Et- & E .  We shall neglect 
L-scattering; this is why we do not include explicitly L a s  a variable in U. 

' 

The distribution u is not directly measurable. It is, however, the physical 
magnitude which most appropriately describes trapped particles. Relations with 
experimentally accessible quantities a re  given in lo. In particular, the number 
Sn of particles contained in the volume element 8ASs of a tube at a point where 
the field is B'  , and which mirror in the interval dB at B > B', (Fig. 2) is given by 

3 



0 

Figure 2 

Dn = U(B, E, 'p, t )  dB b E  B DA 

The ratio in (2) represents the probability of 
finding a particle of the population (1) in the 
volume element 6 A D s .  T ~ ( B ,  E, 'p) is the half- 
period of bouncing of these particles, i.e., thc 
time it takes to go from one mir ror  point to 
its conjugate. In the real geomagnetic field, 
it depends slightly on longitude. V I  I (B', B, E) 
= v (E) j.1 - B' / B is the particle's velocity 
parallel to the field line, at the point B' . For 
a dipole field, the total path of a particle dur- 
ing a bounce period is V T ~  2 2LR ( R  = radius 
of earth). The total particle density per unit 
energy at a given point B' is therefore 

The integration is performed along the field line between the B value at the given 
point, and some upper cut-off Bc,  beyond which all particles are absorbed in the 
atmosphere. The density (3) is related to the omnidirectional counting rate C of 
a spherical detector by 

rn 

C =  I v n A d E  

EO 

where A(E) is the effective cross  sectional area of the counter for particles of 
energy E .  

Let us  now consider electrons of a given energy, mirroring at the same B , 
trapped between two neighboring shells labeled I and I t S I (Fig. 3). I is the 
second adiabatic invariantl4 of these particles computed for field lines belonging 
to the inner shell: 

4 



* . 
I 

i I  ds  
-ds  = 
V 

I + 8 I is the value of the second invariant? taken along a line of force belonging 
to the outer shell: between mirror  points with the same field intensity B.  Bo is 
the field at the equatorial point of a line of force (point of minimum B on a given 
shell); cp is the geographic longitude of this equatorial point. We call vo I = 

n' S I / S y  the gradient of I at the equatorial point of a magnetic shell (Figs. 3,  4). 
Northrop and Teller l5 have shown that the equatorial drift velocity, averaged 
over one bounce, is given by 

-+ 

-t 

where p is the particle's momentum, e the charge (<O for electrons) and T~ is 
the half-period of bouncing. For the different vectors, see Fig. 4. 

-- East 

Figure 3-Shell geometry and elementary f lux tube 
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1 
'. .2 denote with 

Figure 4-Unit Vectors, mean equatorial drift 
velocity and gradient of I 

c = uo 6 t the distmce between equator-dl points of two 
neighboring field lines of a given shell; 6x is then the element of arc  of the 
shell's equatorial Bo -ring; x = Jdx is the total a rc  length along the equator from 
a given initial point and can be used as a label to locate field lines on a given shell. 
Evidently 

ax 6x =-  6'p 
a'p 

and 

x = jrp $ drp 
YO 

(7) 

where ax/+ is a field-geometric factor (&/?IT = 2~/360,RLfor a centered dipole), 
and 'p the geographic longitude of the equatorial point. Let u s  take a tube of lines 
of force of equatorial cross  section 6x 6y and magnetic flux B06x6y (Fig. 3). By 
the definition of U (l), the number of electrons in this flux tube, which mir ror  
between B and B+6B and with kinetic energy between E and E t 6E , is given by 
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We now want to follow the history of these particles, as a function of time. 
Before setting up the Boltzmann-type equation governing the distrihuticr, C,  w e  
have to introduce a cmwzfer,t >-&iiabie for the longitude, i.e. a convenient label 
for the line of force of a given magnetic shell, around which a particle is instan- 
taneously spiralling. We cannot take (p or x (7) as suitable variables, because 
U is a distribution in flux, not in (p or  x . And in the flux expression Bo 5x S Y  
intervening in ( 8 ) ,  not only Sx, but also 6y is a function of longitude, for the 
general geomagnetic field. 

In order to find the correct longitudinal variable, we have to transform the 
flux into an expression 84 = BoSX6Y, in which SY - still related to the radial 
increment 6y - is now longitude-independent, so that it may be ignored when 
following the particles during their longitudinal drift. In that case, X would be 
the correct longitudinal variable, its differential 5X containing complete infor- 
mation about the longitude dependence of the flux 84 of a tube filled with particles, 
as they drift around the earth. 

In order to find X and Y, we just have to determine the longitude dependence 
of S y ,  the equatorial distance between two neighboring magnetic shells. Notice 
that this dependence is a purely geometric one, independent of the particles' 
dynamic variables. Let us take McIlwain's definition of L,14 which we write 
here: 

R3L3B- -- (T) 
M (9) 

(R: radius of the Earth, L dimensionless, I in cm). We further consider the 
relation: 

(only valid within about a few percent, because L actually fluctuates along a 
line of force 1 4 9  16) .  Combining (9) and ( lo) ,  and differentiating, we have 

_ -  312 F' S I  8BO - -  - 
BO R3 L3 
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for  a constant mirror  field B. F' is the derivative of Mcnwain's function with 
respect to its argument. Dividing by Sy, we obtain, for  absolute values 

Notice that l / B o  6B,/Sy -, l / B o  VoB as 6y -, 0 ,  where VoB is the gradient of 
IBI taken at the equatorid point. For a current-free magnetic field, l /Bo VLB 
is equal to the curvature of the line of force at the point where the normal 
gradient is taken; in our case, 1/B0 VoB is therefore the curvature at the equa- 
torial point. We shall introduce the dimensionless number 

K O  = 
3 /RL 

which is the curvature of a line of force at the equatorial point, in units of the 
equatorial curvature 3/RL of the corresponding dipole line ( K ~  = 1 for all dipole 
shells). In the general case, K~ depends on longitude. From (12) and (13), we 
finally have: 

where 

12F' A(B) =- 
R~ L~ 

is a dimensionless function of the mirror  point field intensity B. Notice that, 
according to (5) and (14), we have 
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and for the angular drift velocity, taking into account (6): 

- 1  1 p KO 
r p = - - u  ---- - ax  eB, 7. A ax (17) 

It is important to point out that h ( B )  (15) is a "pure dipole function", even in the 
case of a slightly distorted dipole as the real geomagnetic field (this is not true 
for T,, ). It is easy to verify that our function X is identical with 1/6E, where E 
is the function calculated by Hamlin et al. l7 (formula 22 in this reference). All 
this of course is valid only within a few percent (fluctuation of L on a magnetic 
shell), Notice finally that K~ contributes to the 
velocity. However, one must not forget that T~ 

real field. According to (14), 

A61 
6y =- 

KO 

longitude dependence of the drift 
also depends on longitude in the 

In this relation, the only longitude dependent quantity is K ~ .  We then introduce 
the variables Y and X in the following way: 

6X 6X =-  
KO 

X increases from West to East. Notice that labeling field lines by the coordinate 
X is equivalent to picking up lines of a shell with a "density" (number per unit 
equatorial ring arc length) inversely proportional to the curvature K,, (13). For 
a pure dipole field, o r  for the outer shells in the real field, K~ = 1, and X is 
identical with x (7). For low-L shells, K~ may differ from 1 as much as i6% 
(See Part II). With the new coordinates (19a) and (19b), the flux 84 is 



in which 6Y is now independent of longitude. Adopting X (19b) as the appropriate 
longitudinal variable, we can write the number of electrons in a flux tube as 

6 N  = U(B, E, X, t )  SB SE 6X - Bo 6Y (20) 

A s  Bo 6Y is a constant throughout the whole forthcoming discussion we shall drop 
it at once whenever we consider the number of particles in a flux tube. 

Finally, it is important to remark that there is a more exact expression for 
the fundamental relation (14), which takes into account the fact that in the real  
geomagnetic field, L differs from 1 / R  (M/Bo)'l3 (10) by a small, longitude 
dependent amount CIL = &(L, B, y)16  . This relation is given by 

- 6 1  = V o I  = - [ K ~  - RL a (+)I 
6Y A (B) aY 

However, the correction term RL a/ay(AL/L) is expected to be small as compared 
with K ~ ,  and the longitude variations of K ~ .  On the other hand, the correction term 
implies the existence of a shell splitting as a function of the mirror  point field 
intensity 16. But in the whole treatment which follows , this splitting is being 
neglected, and all electrons, initially on a given line of force, a r e  supposed to 
populate the same shell, regardless of their mir ror  points. 

DERIVATION OF THE FOKKER-PLANCK EQUATION 
FOR LONGITUDE DEPENDENCE 

We are  now in condition to set up the general equation governing the distri- 
bution of trapped electrons. These electrons will undergo displacements in B ,  
E and longitude, caused by three types of mutually independent interactions: 

(1) A change in the mirror  point field B , due to the stochastic process of 
multiple Coulomb scattering in the atmosphere; 

(2) A change in kinetic energy E , due to ionization slowing-down in the 
atmosphere, considered here as a - non-stochastic process (i.e. neglecting 
straggling) ; 

(3) A change in longitude due to interaction with the static magnetic field 
(longitudinal drift), again a - non-stochastic process. 
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All these processes a re  physically independent of each other, although all inter- 
vening parameters a re  in general functions of the three variables B y  E and 
longitude. 

Let us relate the distribution of electrons as it appears in (20), with the 
distribution of electrons at a slightly earlier time t - At, at a different longi- 
tudinal position. For the time being, we shall forget the non-stochastic character 
of E and X, and treat all variables as if they were of the same, stochastic nature. 
We write : 

U(B, E, X, t )  = 

(21) 

In this relation, the distribution of elbctrons which at the time t a re  at a position 
X ,  is linked to the distribution of those electrons which at an earlier time t - 
A t  were at X -5, and which happened to scatter, slow down and drift the right 
amount in  the interval A t ,  in order to become part of the-population described 
by the left hand of (21). 

ndp d e  d e  is the a priori probability that these electrons have undergone 
just the right changes in mirror  point field, energy and longitudinal position, in 
the time interval A t .  

The source term QAt represents the contribution of electrons added by 
injection to the original bunch of particles, duringAt . 

Expanding all intervening functions in Taylor series in ,8 , E , and A t  , we 
obtain: 

t Q t h igher  order terms i n  C2, E', e,& e t c .  

11 



The brackets stand for the average per unit time of the enclosed variables: 

We can now re-instate the non-stochastic character to E and X , by taking n 
as a delta function in energy and longitude: 

In this expression, i ,  is the change of energy per unit time, due to ionization 
loss. Evidently, 

(23) 
1 i = - { E }  

rb 

where { E }  is  the energy loss in one half-bounce (path from one mirror  point to 
its conjugate). We have taken { E )  and 2 as positive quantities, and evidenced 
the energy decrease by the sign in the first delta function. 

A s  to 4, the drift velocity in the X coordinate, we have, according to (19b), 
(16) and (17): 

. .  dX "o 1 ax . p 1 c = t ( B , E , X )  =-=-=--  Cp =-- 
d t  K~ K~ 2'p eBo r b X  

TIo is the probability for a change in the mir ror  point field due to Coulomb 
scattering, in the interval A t .  It is evidently given by 

where P is the probability for  B -scattering during one half-bounce. 

In all this we have implicitly assumed that scattering and slowing down are 
extremely small during one half-bounce of the electron. In other words, we 
suppose that P << 1 for p # 0 and approximately = 1 for p = 0 (this imposes 
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a limiting condition to the applicability of our discussions when dealing with 
very high nt.mos~heric densitics). 

Equation (22) finally becomes, up to the second order in lo: 

where 

The angular brackets ( ) are  average changes per unit time; the curled brackets 
{ } represent average changes per half-bounce. 

We can re-write the longitude-convection term as a function of ordinary 
geographic longitude, taking into account (24) : 

Notice that in a pure, centered dipole, K~ = 1, ax/+ and CF, constants, and the 
convection term would reduce to CF, aU/ 2'p. 

Equation (26) is the most general Fokker-Planck equation describing the 
longitude and time dependence of a trapped particle flux, which scatters and 
slows down in the atmosphere. 

The initial condition for  equation (26) is the distribution U given at a certain 
longitude, for a given initial time. There is a "natural" boundary condition at 
the magnetic equator: 

au - = O  f o r  B = B o  
2B 
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At the ends of lines of force in the high atmospheric density region, there is 
no physical boundary condition for U as a function of B :  as particles enter higher 
densities, they get slowed down by ionization and die away in energy space. 
Therefore, it would be incorrect to impose a condition of the type U = 0 for 
B 2 Bc . Moreover, equation (26) is not valid at all near such fictious boundary 
(for derivatives and integrals could not be interchanged any more when passing 
from (21) to (22)). Of course, if one is only interested in electron fluxes in B 
regions which always remain high up, i.e. far away from high atmospheric den- 
sities, a boufidary condition for U as  a function of B may well be adopted for 
practical, computational reasons. 

DISCUSSION O F  THE GENERAL EQUATION 

Let us  now discuss equation (26) from the point of view of its physicalmean- 
ing. First  of all, in absence of scattering, slowing down and sources, the right 
hand of equation (26) is zero. We then have: 

This equation tells us that a given initial distribution of electrons injected at 
a time to  at a line labeled X, , will proceed drifting eastwards with speed , 
always keeping the electron distribution inversely proportional to the local drift 
speed : 

A s  2 is energy-dependent, equation (30) represents a "flight-time spectrometer 
effect" on the particles, after injection. Notice carefully that expression (31) 
means constancy along the drift path of a given bunch of particles. It is - not a 
constancy in time. 

If we now integrate equation (26) over one complete longitudinal cycle of X ,  
for  a fixed time 't , the second term on the left vanishes. We obtain: 

L f U d X  = $f U 2 dX - $ j U  (p> dX +z 1 -f a2 U (,B2) dX + b (32) 
a t  aB2 
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Dividing by dX and calling 4 

f iUdX 

f UdX 
iA, = 

we obtain the longitude-independent equation 

This equation is formally equivalent to the time-dependent equation used by 
several authors9. l o l l l  13. Notice, however, the following remarks: 

(1) The average distribution UAv is computed integrating over the new 
variable X, which according to (33a), means that U must be weighted 
at the different longitudes with the inverse of the equatorial curvature 
of the field lines. 

(2) The "coefficients" tAv, (&, and(,B2Av are  not simple averages over 
the new coordinate, but they are weighted with the distribution 3 itseif. 
In other wsrds, they are functionals of the unknown distribution. 



All this leads us to the conclusion that a longitude-average Fokker-Planck 
treatment of the problem of trapped particle diffusion is not valid, unless we 
restrict  our description to only those particles which mirror  high enough at all 
longitudes so that their distribution function can be expected a priori as very 
little longitude dependent. Equation (34) is certainly meaningless as a simple 
differential equation for that portion of B-L space, which descends below about 
300 - 350 Km in the South American Anomaly. This is precisely the domain 
where the longitude-independent treatment has so far failed to give numerical 
r e s d t s  compatible with experimental measurements. 

In order to "legalize" the longitude-independent description for such cases 
in which we know a priori that U will not depend strongly on X, we have to evaluate 
the coefficients (33) for a distribution U which has the smallest possible longi- 
tude dependence. This dependence is given precisely by (31), i.e. for the case 
of absence of interactions with the atmosphere. Introducing (31) in (33), and 
taking into account (24), we obtain "true" coefficients (independent of U ) :  

These expressions a re  formally identical with the longitude-average coefficients 
used by HassittI8, in which the atmospheric constituents (the only strongly longi- 
tude dependent variables actually contained in i , (/?) and (p') ) are weighted 
inversely proportional to the equatorial drift velocity at each longitude. 

We must, however, insist again that the use of a longitude-independent 
Fokker-Planck equation for the description of trapped electron diffusion, is not 
valid at all for those high B values, for which the atmospheric interactions in the 
region of the Anomaly will introduce a notable departure of U from the "collision- 
less" expression (31). 
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Let u s  now return to equation (26),  for the steady state case a U / a t  = 0. 
Tiis is very nearly true for natural radiation belt electrons during quiet solar 
wind conditions, and even for artifically injected fluxes, provided we a re  inter- 
ested in the longitude dependence of the electron distribution, at times after in- 
jection long compared to a typical longitudinal drift period. In that case, we 
can also neglect the contribution of the natural source term Q . Taking into 
account (24), (23) and (27), we introduce the distribution function 

w = u g = u - -  P 1  
eBo r b A  

and the coefficients 

which now represent changes per unit longitudinal coordinate X . Notice that 
the factor 

-L---- - -11 p l y  sically represents tne iiboUnce-density," i.e., the number of half-bounces per 
unit longitudinal coordinate, which a particle of mirror  point field B and energy 
E makes at any position on the shell. Notice that this bounce density is indepen- 
dent of the longitudinal position X. 
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Using (36) and (37), the steady state form of (26) reads: 

(39) 

This is the fundamental equation which describes the longitude dependence of a 
stationary, source free electron distribution, now represented by W (36). It 
will be the main subject for the rest of this work. 

A useful concept for a qualitative analysis of equation (39) is that of the 
“mirror  point flow in B-X space,” i.e., the mean change of the mirror  point 
field intensity of a particle, per unit longitudinal coordinate. Let us consider 
the following relation 

WdB = const, I”” BO 

where the integral is taken along a given field line between the equatorial point 
Bo and a generic field point B(X) . We shall call the relation B = B(X) , which 
ensures the constancy of (40), “characteristic trajectory of a mirror  point” (see 
Fig. 5). Notice carefully that, in general, B = B(x) is not - the real path of the 

L * 
X 
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mirror point of a given electron, in B-X space. However, it does become the 
actual average path, if  we neglect energy loss and also neglect the longitude 
dependence of 7;. In t h a t  case: (40) is prnpnrtinnal tn t h e  niim.her cf partiql~._c 
mirroring between equator and B(X). But 'even if these conditions are not satis- 
fied. the function B = B(X) defined in (40) is a useful concept. 

In absence of all interactions, B(X) = const., i.e. the mirror point field 
intensities remain unchanged. We now turn on Coulomb scattering, but still 
neglect energy loss. We then introduce the quantity vm = dB(X)/dX as the 
"mirror point flow in B-X space," obtaining, with the use of (39) and (40): 

As defined in (41), vm describes the average l r f l o ~ l l  along the field lines, of 
mirror  points of electrons of a given energy, as they drift in longitude. If we 
wish to add the energy loss mechanism, an additional term would appear in the 
right side of (41), and particle individuality would be lost. 

Notice that there are three physically quite distinct contributions to the 
mirror point rrflo~v." The first term of the right hand of (41) represents a steady 
increase of B , (p- is positive), i.e. a steady lowering of mirror point altitude. 
This contribution comes - from the first order, "streaming" term in B (39). In 
absence of dispersion (p2  = 0), is the only contribution to vm ; in that case, 
B = B(X) = JvmdX is just the characteristic of the corresponding first order 
differential equation. 

The second and third terms on the right hand side of (41) arise in the dis- 
persion mechanism. Their presence in (41) clearly shows that dispersion 
contributes to a steady, average l l f l o ~ l l  of mirror points along the lines of force. 
These two terms are governed by the gradients (along field lines) of the coeffi- 
cient p, and of W (or U ) ,  respectively. The gradient of is always positive, 
so that the second term in (41) always represents an upward motion of the par- 
ticles's mirror  points (back-scattering from the denser atmosphere). If, on the 
other hand aW/aB < 0 ,  the third term represents a lowering of the mirror point 
altitude. If w p= const. along a line of force, the contribution from the two 
dispersion terms is zero: The number of mirror points thrown upwards by the 
gradient in p, exactly compensates the number of mirror points streaming 

in this case, is that of the first order term: vm = ,B. 
dCY.Tkwards &le tz the grEidizzt of w . The oz!y mirrzr point f?o\v whiz!: rzmFiins, -- 

19 



DETERMINATION OF THE COEFFICIENTS 

In this section we shall obtain expressions for the various coefficients inter- 
vening in (39). According to (37), the principal quantities to be found a r e  A , { E }, 
{,B> and { P 2 } .  

With respect to the dimensionaless function A ,  defined in (15), we recall 
that it is inversely proportional to a dipole-type function computed by Hamlin, 
et. al. l7 A good approximation of h for the interval 1/4 < B,/B 2 1 is given by 

The energy loss per half-bounce { E  } is given by the integral 

The origin of the field line a rc  length is taken at the geomagnetic equator. 
ds/dl - B'(s)/B is the element of trajectory of the electron at a point s where 
the field is B' . Using tables given by Berger and Seltzer, l9 we obtainthefollow- 
ing very good approximation: 

h(E) (kev/cm) 

where 

2.61 + 349.0 f o r  E < 470 kev 

h(E) = 

c 4 . 5 4  f o r  E Z 4 7 0 k e v  - 

(44) 
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and 

'eff.ion. = N  oxygen + 0.88' 'nitrogen t 0 .273  Nhelium (45) 

is the "effective" atmospheric number density for ionization loss of electrons. 
A s  for the time being we a re  interested in low L shells only, we did not include 
the contribution from atmospheric ions and electrons. 

In order to evaluate { p } ,  the average change of B per half-bounce, we first 
have to perform the average of collisons over the isotropic azimuthal distribution 
of scattering angles. Following Welch, Kaufmann and Hess lo and slightly changing 
their notation, we obtain 

-d p = B ( g - y ) s i n '  B 1  e 

p" is the change in mirror  point field intensity B , when the electron's pitch 
angle scatters an amount 8 at a field position B' , averaged over all possible 
azimuthal angles of scattering. Now we have to find the average of s i n 2 @  at the 
given field point €3'. This will be given by 

where 

da .  

dB 
s i n '  e - d e  

is the average contribution from one atom of class i. Ni are  the number den- 
sities of the different atmospheric constituents at the field point B' ; dcri/dB a re  
the differential cross sections for screened Coulomb scattering, for each con- 
stituent. Using Moli'ere's expression for doi/d@,20 and following closely Welch, 
Kaufmann, and Hess, lo we obtain 
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-, 

where 

is the "effective" atmospheric number density for screened Coulomb scattering 
of electrons. Again, the contribution of atmospheric ions and electrons is 
excluded. 

We finally have to perform the integration along the path of a particle from 
one mirror point to its conjugate: 

Again following Welch, Kaufman and Hess, lo we obtain p"': 

% 

p2 = 2B2 (+ - I) s i n 2  8 

Therefore : 
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. .  

If we now call : 

K(B, E) = 4 x B 
1 + 0.167 lnJ" (A+ 2) 

m c 2  m c 2  
( g a u s s  c m 2 )  

C(E) = h(E) (kev c m 2 )  

we can summarize expressions (51), (53) and (43) in the form 
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{ p 2 )  = 2BK (S, - S2) 

{ E )  = cs; 

(55) 

DISCUSSION OF ELECTRON DRIFT AND SCATTERING 
THROUGH A MODEL FOR THE ANOMALY 

Before setting up numerical integrations for low altitude electrons, it is 
very helpful to discuss Equation (39) qualitatively, using a simple, approximate 
model of the atmosphere along field lines, in the region of the South American 
Anomaly, and where most of the scattering and energy loss occurs. 

We shall restrict  ourselves to the region between 250 and 750 Km altitude, 
and to longitudes within about *30° of the f'center'f of the Anomaly (supposed at 
a longitude cp, = 318OE). In the present discussion we shall neglect the energy 
loss term and suppose ax/acp = const. and K~ = 1. These latter suppositions 
lead to a proportionality between X and the longitude 'p of the equatorial point 
of a field line (19b). 

Using the Harris-Priester atmosphere21 for low solar activity (S = 70), 
and Southern Hemisphere geomagnetic field B-L rings as calculated by 
Stassinopoulos,22 we obtain a quite good f i t  for the effective number density 
(50) as a function of B and c p ,  of the type: 

Due to the supposed proportionality between cp and x, it is easy to convert this 
expression into a function of X. All this is valid only for very low L values. 
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For L = 1.25, we have:* 

13 hs local time at the center of the Anomaly: 

No = 10'' Ba = 0.243 gauss  AB = 5.25 x gauss  AQ = 4.69" 

02 hs  local time at the center: 

No = 10" Ba = 0.243 gauss AB = 4.23 x gauss  AQ = 3.78" 

For an expression of the form (56), with a "scale height'? AB very small 
compared to B , the main contribution to the integrals (54) comes from a region 
close to that mirror  point which lies in the high atmospheric density end of the 
line of force. We can therefore approximate: 

and 

/ AB 

AB s, - s, > s, 2B 

3 B D s  is the average gradient of B along the field line, in the region of interest. 
Taking into account (55), the following relation between the coefficients { p }  and 
{ p2 } holds : 

*For higher L shells (L 2 1.8), the approximation (56) becomes very crude. Qualitatively, as L 
increases, 'pa shifts to the East, and 0~ increases considerably. 
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This is similar to a relation found by Walt and McDonald l2 for the coefficients 
of a time dependent (but longitude-independent) Fokker-Planck equation set up 
in terms of mirror point altitudes, in the region of high atmospheric densities. 
Relation (59) is expected to hold quite generally in the region of high densities, 
provided one inserts for AB the value AB = Ne 
tion is taken along a line of force. 

\ 

/ I aNe ,/aB I , where the deriva- 

With (59) and the linear relationship between X and , Equation (39) becomes 

in which p is of the form 

K' is obtained from (37), (54), (55) and (57), and is a slowly varying function of 
B (slow in comparison with exp (B/AB ). 

The mirror  point flow (41) is now 

Taking into account (61) we can approximate: 

Therefore 
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. .  

Physically, the cancellation of the first term with the E D C C C ~  t c rm fii (41) 1111~~1s 
that the upstream of mirror  points due to diffusion from the denser atmosphere 
("backscattering" at lower altitudes) exactly compensates the downstream due 
to the f i rs t  order term. What is left, is a mirror  point streaming! entirely due 
to diffusion, and which may be upwards or  downwards, according to the gradient 
of the actual electron distribution, along a line of force. 

w I 

I t 
8 1  B 

Figure 6-Qualitative description of the evolution 
of a mirror point distribution at  very low altitudes. 

In particular, if dU/aB = 0 for some valueB,, there will be no net flow of 
mirror  points across this B value. An initial distribution of electrons at a 
longitude yo like the one shown in Figure 6, will therefore keep the maximum 
at the same B, , but will broaden towards both sides a s  the particles drift towards 
the east ( 'pz > 'p, > yo ). This smearing-out will be faster at the high-B side 
(towards lower altitudes), for p is much greater there (see expression (63)). 
A similar result was obtained numerically by MacDonald and Walt.12 

If now W is of the form 
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we have a solution of Equation (60), which represents a steady state in longitude. 
In this case, the mirror  point flow (63) is approximately equal to p: 

It can be shown that such a steady state form (64) is attained very soon, provided 
the gradient of W along a line of force is negative. It is also easy to verify that 
(64) is an "equilibrium" configuration: Any small departure of W from (64) will 
cause mirror point flows which will tend to correct such a departure. 

For all these reasons, it is extremely instructive to inspect in detail the 
"motion" of mirror points for such a longitude independent equilibrium state 
(64). Although, of course, all this is only a crude approximation, we expect all 
qualitative, physical features to be valid also in the real case. This qualitative 
analysis will then help us  to set  up and interpret the tedious numerical calcula- 
tions (Part III) . 

We shall analyze the characteristic trajectories of mir ror  points B = B(X) 
(40) throughout the South American Anomaly, described approximately by (56), 
for an equilibrium state electron distribution (64). Firs t  of-all, we will do our 
discussion in terms of the more familiar longitude variable y , rather than X , , 
which in our description anyway is supposed proportional to the former. In 
order to obtain the characteristic trajectories in B -y space, we have to integrate 
(65), taking into account (61) and the relation (19b), which now reads 

RLy . 2n x = -  
360 

Starting from an initial longitude y o ,  well West of the center of the Anomaly, 
and for a shell L = 1.25, we obtain characteristic mir ror  point trajectories for  
300 kev electrons, schematically represented in Figure 7. Remember that they 
correspond to a distribution of the type (64). In this figure, lines of constant 
altitude for the approximate expression (56) are also shown. Below 250 Km, the 
Ne (B, c p )  dependence is still nearly exponential in B and Icp - cp, I , but 
with a smaller "scale height" AB. We can safely assume for this discussion, 
that particles getting below this level will be removed by precipitation. Above 
750 Km, the scattering effect is extremely small during one drift through the 
region of interest. 

= Ne 

. 
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Figure 7-Characteristic mirror point trajectories in  the region of the South American 
Anomaly (model (56)) ,  for a steady state distribution of 300 Kev electrons of the form 
(64), and for L = 1.25 (13.00 L T  in the Anomaly). Electrons whose mirror points are 
in i t ia l ly  (i.e. West of the Anomaly). between Bmin and Bmax, populate the “shadow” 
region. Those between Bmax and B,, precipitate East of (pa; those with B > BE, 
precipitate on the Westside. Constantaltitudelines for h = 250and350Kmareshown. 
Energy loss i s  neglected. 
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Notice in Figure 7 that there is a narrow "window" Bmin - B,,, , at the 
initial longitude yo West of the Anomaly, which contains the mir ror  points of 
those electrons, which populate the high-B o r  "shadow" region, East of the 
Anomaly. After one more turn around the earth, all these electrons a re  precip- 
itated into the dense layers. A certain portion of these ( Bmax - RwE ) will manage 
to get "around" the center of the Anomaly, and precipitate into its Eastern side. 
Electrons mirroring initially at higher altitudes than those corresponding to the 
"window," will lower slightly their mirror  points during each passage through 
the Anomaly until they fall into the critical window. Please remember carefully 
that all this corresponds to an equilibrium distribution of the form (64), neglecting 
energy loss, and remember that the mirror  point "trajectories" a re  average 
paths, not actual patterns for a given electron. 

The most striking result of this analysis, is that if multiple Coulomb scatter- 
ing is the only process responsible for the replenishment ofyhe "shadow" region 
East of the Anomaly, then there is a - very limited region of the atmosphere in 
the South American Anomaly (limited in both, longitude and altitude), which en- 
tirely governs this replenishing process. We therefore should expect that in the 
real case, electron fluxes in the "shadow" a re  strongly influenced by the instan- 
taneous atmospheric structure in this critical region. 

In particular, we may expect a diurnal variation of electron fluxes and elec- 
tron precipitation, determined by the diurnal variation of the atmosphere within 
about *5O of the center of the Anomaly, between about 250-400 Km altitude. We 
conclude, that i t  would be unrealistic, to car ry  out numerical calculations with 
a 24-hour averaged atmosphere. Rather, numerical integration should be per- 
formed for different local times at the Anomaly (Part II). 

Notice finally, that according to this picture, replenishment occurs right at, 
o r  shortly rtafter," i.e. East, of the Anomaly. Diffusion into the "shadow" region 
far East of the Anomaly is negligible, for Coulomb scattering. We may conclude 
our discussion by pointing out that in the picture described above, there is a 
steady flow of particles out of the lower B region of a shell, towards higher B 
values, and from there, into the atmosphere at the Anomaly. In an equilibrium 
state, this loss must be exactly balanced by a continuous injection from a source 
mainly effective in the lower B region. In absence of such a source, Le. in a 
non-equilibrium state, this flow and subsequent loss should determine the lifetime 
of the trapped radiation in question. 

A s  a numerical example, we have calculated the position of the critical 
''window" in S (for the definition of Bmi, and BmaX see Figure 7), for local times 
in the Anomaly as 1300 LT and 0200 LT. The values obtained for L = 1.25 are 
shown in Table 1. Although the B values differ only very little, remember that 
they are in a region where the distribution U is a very steep function of €3. 
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1300 LT 

min B 

B 
ma x 

0200 LT 

Bmin 

ma x 
B 

Table 1 

300 kev 

0.198 gauss 

0.201 

0.207 

0.210 

625 kev 

0.205 gauss 

0.209 

0.213 

0.216 

Detailed quantitative results on electron fluxes can be obtained only by num- 
erical integration of Equation (39). In particular, the energy loss term, neglected 
in the above discussion, has to be taken into account; this is particularly impor- 
tant if we analyze the behavior of electrons which dip below about 300 Km altitude 
in the Anomaly. 
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